آنزیم ها در بدن موجودات زنده چه نقشی دارند



آنزیم ها در بدن موجودات زنده چه نقشی دارند را از سایت هاب گرام دریافت کنید.

نقش آنزیم‌ها در بدن چیست؟

بدن همانند یک ماشین برای کار خود احتیاج به انرژی دارد و این انرژی از طریق سوخت و ساز (متابولیسم) مواد غذایی ایجاد می‌شود. فرآیندهای متابولیکی به‌طور مؤثر از طریق بعضی از مواد فعال بنام آنزیم که نقش کاتالیزوری دارند، انجام می‌گیرند. آیا می‌دانید آنزیم‌ها در بدن چه نقشی دارند؟

یک آنزیم کاتالیزور، ارگانیکی است که توسط یک سلول زنده ایجاد می‌شود. بدن انسان دارای صدها نوع آنزیم مختلف می‌باشد. بیاری از آنزیم ها داخل سلولی هستند و در داخل سلول‌ها عمل می‌کنند ولی بعضی دیگر مثل آنزیم‌هایی که در سیستم گوارش نقش دارند، در خارج سلول‌ها عمل می‌کنند. آنزیم ها تقریباً در هر واکنش شیمیایی که در بدن رخ می‌دهد، نقش دارند. اکثر فعالیت های فیزیولوژیکی نظیر گوارش، ساخته شدن یا از بین رفتن بافت‌ها، تنفس سلولی و انقباض ماهیچه‌ای به عمل آنزیم ها بستگی دارند.

فعالیت یک آنزیم به دمای بدن، میزان اسیدی یا قلیایی بودن (PH) خون و موادی که آنزیم روی آن‌ها عمل می‌کنند، بستگی دارد. یک ملکول منفرد آنزیم قادر است در چند ثانیه تغییرات لازم را روی صدها ملکول ماده اولیه با سوبسترا ایجاد کند. آنزیم ها از پروتئین یعنی زنجیره های بلند اسید آمینه دو بار به این بیماری مبتلا شود تشکیل‌شده‌اند. عمل آنزیم به این صورت است که با ماده اولیه که سوبسترا نامیده می‌شود متصل شده و یک ترکیب بینابین نا پایداری را ایجاد می‌کند که بعد به محصول نهایی و آنزیم اولیه شکسته می‌شود. آنزیم‌ها در حقیقت تسریع کننده های واکنش‌های شیمیایی بدن هستند و قادرند با مقادیر کم، مقادیر زیادی از ترکیبات شیمیایی را تغییر دهند و در پایان واکنش بدون تغییر باقی می‌مانند.

عمل آنزیم می‌تواند به‌وسیله بعضی مواد سمی مثل جیوه، آرسنیک یا سرب متوقف شود. حضور چنین موادی از عمل آنزیم که تشکیل ماده بینابینی با سوبستراست جلوگیری می‌کند.

آنزیم‌ها نه‌تنها برای بدن ما مفید هستند بلکه در صنعت، طب و شیمی تجزیه نیز کاربرد دارند. آنزیم‌ها برای تبدیل نشاسته به گلوکز و هم‌چنین تبدیل گلوکز به فروکتوز استفاده می‌شوند. هم‌چنین آنزیم ها در صنعت پنیر سازی و تولید پنی سیلین های نیمه مصنوعی نیز کاربرد دارند.

آنزیم ها به شش گروه عمده تقسیم می‌شوند: «اکسیدازها» که سبب واکنش‌های اکسیداسیون و احیا می‌شوند. «ترانسفرازها» که سبب انتقال عامل از یک ملکول به ملکول دیگر می‌شوند. «هیدرولازها» که با استفاده از ملکول آب سبب تجزیه و ترکیب می‌شوند. «لیازها» که بدون استفاده از انرژی و آب، تجزیه و ترکیب واکنش‌ها را ایجاد می‌کنند. «ایزومرازها»، که سبب تبدیل ماده‌ای به ایزومر آن می‌شوند مثل تبدیل گلوکز به فروکتوز. «لیگازها» که با مصرف انرژی تجزیه و ترکیب مواد را سبب می‌شوند.

در بحث فعالیت آنزیم‌ها به تعدادی از آنزیم‌ها می رسیم که دارای ساختار مولکولی متفاوت بوده ولی ازنظر فعالیت آنزیمی عمل مشابهی را انجام می‌دهند این آنزیم ها را نسبت بهم آیزوزیم گویند. آیزوزیم‌ها در سرم و در بافت‌های انواع مهره‌داران، حشرات گیاهان وجود دارند.

منبع مطلب : www.1pezeshk.com

مدیر محترم سایت www.1pezeshk.com لطفا اعلامیه بالای سایت را مطالعه کنید.

آنزیم

آنزیم

آنزیم‌ (به فرانسوی: enzyme) یا زی‌مایه[۱] پروتئین‌هایی هستند که به عنوان کاتالیزورهای بیولوژیکی[a] عمل می‌کنند. کاتالیزورها سرعت واکنشهای شیمیایی را افزایش می‌دهند. مولکول‌هایی که ممکن است آنزیم‌ها روی آن عمل کنند سوبسترا نامیده می‌شوند و آنزیم بسترها را به مولکولهای مختلفی که به عنوان فراورده معروف هستند تبدیل می‌کند. تقریباً تمام فرایندهای متابولیک موجود در سلول نیاز به کاتالیز آنزیم دارند تا به سرعت کافی انجام شود تا زندگی ادامه یابد.[۲] :۸٫۱ مسیرهای متابولیک به کاتالیز مراحل فردی آنزیم‌ها بستگی دارند. مطالعه آنزیم‌ها که به عنوان آنزیم‌شناسی[b] نامیده می‌شود و در زمینه جدیدی به نام تجزیه شبه‌آنزیمی رشد یافته‌است، با درک اینکه در طول تکامل، برخی از آنزیم‌ها توانایی انجام کاتالیز بیولوژیکی را از دست داده‌اند، که غالباً در توالی اسیدهای آمینه آنها و خصوصیات غیرعادی «شبه کاتالیستی» منعکس می‌شود.[۳][۴]

آنزیم‌ها در بیش از ۵۰۰۰ نوع واکنش بیوشیمیایی به عنوان کاتالیزور شناخته شده‌اند.[۵] سایر بیوکاتالیست‌ها مولکول‌های RNA کاتالیزوری هستند که ریبوزیم نامیده می‌شوند. ویژگی آنزیم‌ها از ساختارهای سه بعدی منحصر به فرد آنها ناشی می‌شود.

مانند همه کاتالیزورها، آنزیم‌ها با کاهش انرژی فعال‌سازی، سرعت واکنش را افزایش می‌دهند. بعضی از آنزیم‌ها می‌توانند با تبدیل خود به بستر موجب تولید میلیون‌ها بار سریعتر محصول شوند. اوروتیدین ۵-فسفات دکربوکسیلاز[c] موجب می‌شود واکنشی که در نبود این آنزیم میلیون‌ها سال به طول می‌انجامد در چند میلی‌ثانیه رخ دهد.[۶][۷] از نظر شیمیایی، آنزیم‌ها مانند هر کاتالیزوری هستند و در واکنش‌های شیمیایی مصرف نمی‌شوند و تعادل یک واکنش را تغییر نمی‌دهند. آنزیم‌ها با ویژگی‌های خاصی نسبت به سایر کاتالیزورهای دیگر متفاوت هستند. فعالیت آنزیم را می‌توان تحت تأثیر مولکول‌های دیگر قرار داد: بازدارندهها مولکول‌هایی هستند که باعث کاهش فعالیت آنزیم می‌شوند و فعال‌کنندهها مولکول‌هایی هستند که فعالیت را افزایش می‌دهند. بسیاری از داروهای درمانی و سموم مهارکننده یا بازدارنده آنزیم هستند. فعالیت آنزیم به‌طور قابل توجهی خارج از دمای و pH مطلوب آن کاهش می‌یابد و بسیاری از آنزیم‌ها هنگام قرار گرفتن در معرض گرمای بیش از حد (پایدار) واسرشته یا دناتوره می‌شوند و ساختار و خواص کاتالیزوری خود را از دست می‌دهند.

بعضی از آنزیم‌ها به‌صورت تجاری به‌طور مثال در سنتز آنتی‌بیوتیکها استفاده می‌شوند. برخی از محصولات خانگی برای سرعت بخشیدن به واکنش‌های شیمیایی از آنزیم‌ها استفاده می‌کنند: آنزیم‌های موجود در پودرهای شستشوی بیولوژیکی پروتئین، نشاسته یا لکه‌های چربی روی لباس‌ها را تجزیه می‌کنند و آنزیم‌های موجود در تردکننده‌های گوشت پروتئین‌ها را به مولکول‌های کوچکتر تجزیه می‌کنند و باعث می‌شود گوشت راحت تر جویده شود.

تاریخچه[ویرایش]

در اواخر سده ۱۷ و اوایل سده ۱۸، هضم گوشت توسط ترشحات معده[۸] و تبدیل نشاسته به قند توسط عصاره‌های گیاهی و بزاق شناخته شد اما مکانیسم‌هایی که به موجب آن اتفاق می‌افتد مشخص نشده بود.[۹]

شیمیدان فرانسوی، آنسلم پین اولین کسی بود که در سال ۱۸۳۳ آنزیم، دیاستاز را کشف کرد.[۱۰] چند دهه بعد، هنگام مطالعه تخمیر قند به الکل توسط مخمر، لویی پاستور نتیجه گرفت که این تخمیر توسط نیروی حیاتی موجود در سلول‌های مخمر به نام «تخمیر» (ferments) ایجاد شده‌است، که تصور می‌شد فقط در موجودات زنده وجود دارد. وی نوشت: «تخمیر الکلی عملی است که با زندگی و سازماندهی سلول‌های مخمر ارتباط دارد، نه با مرگ یا قرارگیری سلول‌های مخمر.»[۱۱]

در سال ۱۸۷۷، ویلهلم کوهن (فیزیولوژیست آلمانی) برای اولین بار از اصطلاح آنزیم، که از واژه یونانی ἔνζυμον، به معنای «خمیر» یا «در خمیرمایه» است، برای توصیف این فرایند استفاده کرد.[۱۲] بعداً واژه آنزیم برای اشاره به مواد غیرزنده مانند پپسین مورد استفاده قرار گرفت و از کلمه تخمیر برای اشاره به فعالیت‌های شیمیایی تولید شده توسط موجودات زنده استفاده شد.[۱۳]

ادوارد بوخنر اولین مقاله خود را در مورد مطالعه عصاره‌های مخمر در سال ۱۸۹۷ ارائه کرد. در یک سری آزمایش‌ها در دانشگاه هومبولت برلین، وی دریافت که شکر توسط عصاره مخمر حتی وقتی سلول مخمر زنده در مخلوط وجود ندارد تخمیر می‌شود[۱۴] او آنزیمی را که تخمیر ساکارز را به وجود آورد، " زیماز " نامید.[۱۵] وی در سال ۱۹۰۷ به دلیل «کشف یک روش تخمیر بدون سلول زنده» جایزه نوبل شیمی را دریافت کرد. به دنبال نمونه بوخنر، معمولاً آنزیم‌ها مطابق واکنشی که انجام می‌دهند به صورت ترکیب پسوند -از با اضافه بستر، برای نمونه، لاکتاز آنزیمی است که لاکتوز را جدا می‌کند یا بسته به نوع واکنش مانند، DNA پلیمراز که پلیمرهای DNA را تشکیل می‌دهد نامگذاری شده‌اند.

هویت بیوشیمیایی آنزیم‌ها در اوایل دهه ۱۹۰۰ ناشناخته بود. بسیاری از دانشمندان مشاهده می‌کردند که فعالیت آنزیمی با پروتئین همراه است، اما دیگران (مانند برنده جایزه نوبل، ریچارد ویلستر) برا این باور بودند که پروتئین‌ها صرفاً حامل آنزیم‌های واقعی هستند و پروتئین‌ها به خودی خود قادر به کاتالیز نیستند.[۱۶] در سال ۱۹۲۶، جیمز ب. سامنر نشان داد که آنزیم اوره‌آز پروتئین خالص است و موجب بلوری شدن آن می‌شود. او همچین در سال ۱۹۳۷ برای آنزیم کاتالاز نیز همین ترتیب را انجام داد. نتیجه‌گیری که پروتئین خالص می‌تواند همان آنزیم‌ها باشند به‌طور قطعی توسط جان هاوارد نورثروب و وندل مردیت استنلی، که در سال ۱۹۳۰ روی آنزیم‌های گوارشی پپسین، تریپسین و کیموتریپسین کار می‌کردند نشان داده شد. این سه دانشمند جایزه نوبل شیمی را در سال ۱۹۴۶ دریافت کردند.[۱۷]

این کشف که آنزیم‌ها می‌توانند متبلور شوند، درنهایت باعث شد که ساختارهای آنها با بلورشناسی پرتو ایکس حل شود و نخستین بار برای لیزوزیم، آنزیمی که در اشک، بزاق و سفیده تخم‌مرغ یافت می‌شود و پوشش برخی از باکتری‌ها را هضم می‌کند انجام شد. این ساختار توسط گروهی به سرپرستی دیوید چیلتون فیلیپس حل و در سال ۱۹۶۵ منتشر شد.[۱۸] ساختار با وضوح بالا ی لیزوزیم آغازگر ایجاد زمینه زیست‌شناسی ساختاری و تلاش برای درک نحوه عملکرد آنزیم‌ها در سطح اتمی جزئیات بود.[۱۹]

نامگذاری[ویرایش]

نام آنزیم اغلب از زیر لایه آن یا واکنش شیمیایی که آن را کاتالیز می‌کند، گرفته می‌شود، با واژه‌ای که به صورت -ase در انتها تمام می شود.[۲] :۸٫۱٫۳ نمونه‌های آن شامل لاکتاز، الکل دهیدروژناز و DNA پلیمراز است. آنزیمهای مختلفی که همان واکنش شیمیایی را کاتالیز می‌کنند، ایزوزیمز[d] نامیده می‌شوند. :۱۰٫۳

طبقه‌بندی[ویرایش]

اتحادیه بین‌المللی بیوشیمی و زیست‌شناسی مولکولی برای نامگذاری آنزیم‌ها، عدد گروه آنزیم (شماره EC) را ایجاد کرده‌است. هر آنزیم توسط دنباله ای از چهار عدد پیش از "EC" که مخفف "کمیسیون آنزیم" است توصیف می‌شوند. شماره اول آنزیم را به‌طور گسترده بر اساس مکانیسم آن طبقه‌بندی می‌کند.[۲۰]

طبقه‌بندی سطح بالا:

این بخش‌ها با سایر ویژگی‌ها از جمله بستر، محصولات و مکانیسم شیمیایی تقسیم می‌شوند. آنزیم با چهار نام عددی معین کاملاً مشخص می‌شود. به عنوان مثال، هگزوکیناز (EC 2.7.1.1) یک ترانسفراز (EC 2) است که یک گروه فسفات (EC 2.7) را به یک قند هگزوز، یک مولکول حاوی گروه الکل اضافه می‌کند (EC 2.7.1).[۲۱]

ساختار[ویرایش]

آنزیم‌ها به‌طور کلی پروتئینهای حلقوی هستند که به تنهایی یا در کمپلکس‌های (Protein complex) بزرگتر فعالیت می‌کنند. دنباله اسیدهای آمینه ساختار را مشخص می‌کند که به نوبه خود فعالیت کاتالیزوری آنزیم را تعیین می‌کند.[۲۳] گرچه ساختار عملکرد را تعیین می‌کند، ولی فعالیت آنزیمی جدید نمی‌تواند به تنهایی از طریق ساختار پیش‌بینی شود.[۲۴] ساختارهای آنزیمی وقتی گرم می‌شوند یا در معرض دناتورانت‌های شیمیایی قرار می‌گیرند آشکار می‌شوند که واسرشتن نام دارد و این اختلال در ساختار معمولاً باعث از بین رفتن فعالیت می‌شود.[۲۵]

دناتوراسیون آنزیم معمولاً با دمای بالاتر از سطح طبیعی یک گونه مرتبط است. در نتیجه، آنزیم‌های موجود در باکتری‌هایی که در محیط‌های آتشفشانی مانند چشمه‌های آب گرم زندگی می‌کنند، به دلیل توانایی عملکرد در دماهای بالا، مورد مصارف صنعتی قرار می‌گیرند و به این ترتیب واکنش‌های آنزیمی کاتالیز شده با سرعت بسیار بالایی امکان‌پذیر می‌شوند.

آنزیم‌ها معمولاً بسیار بزرگتر از بسترهای آنها هستند. دامنه اندازه از ۶۲ اسید آمینه باقی مانده برای برای مونومر ۴-تاکسومراز اگزالوکروتونات(4-Oxalocrotonate tautomerase[۲۶] تا ۲۵۰۰ باقی‌مانده در سنتاز اسیدهای چرب (Fatty acid synthase) حیوانات متفاوت است.[۲۷] تنها بخش کوچکی از ساختار آنها (حدود ۲–۴ آمینو اسید) که سایت کاتالیزوری نام دارد به‌طور مستقیم در کاتالیز درگیر است.[۲۸] این سایت کاتالیزوری در کنار یک یا چند سایت اتصال دهنده قرار دارد که در آن مانده‌ها بسترها را جهت می‌دهند. سایت کاتالیزوریک و سایت اتصال دهنده، سایت فعال آنزیم را تشکیل می‌دهند. اکثریت باقیمانده ساختار آنزیم به منظور حفظ جهت‌گیری دقیق و پویایی محل فعال در حضور دارد.[۲۹]

در بعضی از آنزیم‌ها، هیچ اسید آمینه مستقیماً درگیر در کاتالیز نیست. در عوض، آنزیم حاوی سایت‌هایی برای اتصال و جهت‌یابی کوفاکتورهای کاتالیزوری است.[۲۹] ساختارهای آنزیمی همچنین ممکن است دارای مکانهای آلوستریک باشد که اتصال یک مولکول کوچک باعث ایجاد تغییر شکل می‌شود که باعث افزایش یا کاهش فعالیت می‌شود.[۳۰]

تعداد کمی از کاتالیزورهای بیولوژیکی مبتنی بر RNA به نام ریبوزیم‌ها وجود دارند، که دوباره می‌توانند به تنهایی یا در کمپلکس به همراه پروتئین‌ها عمل کنند. رایج‌ترین این ریبوزوم است که از پروتئین و اجزای RNA کاتالیزوری تشکیل شده‌است.[۲] :۲٫۲

جایگاه فعال[ویرایش]

جایگاه فعال ناحیه‌ای از آنزیمی است که در آن مولکول‌های بستر به هم متصل می شوند و تحت واکنش شیمیایی قرار می گیرند. جایگاه فعال متشکل از باقیمانده اسید آمینه است که پیوندهای موقتی با بستر ( محل اتصال ) و باقی مانده ای ایجاد می کند که واکنش را کاتالیز می کند. [۳۱] اگرچه جایگاه فعال فقط ۱۰-۲۰٪ از حجم آنزیم را اشغال می کند ، :۱۹ اما مهمترین بخش در ساختار یک آنزیم است زیرا مستقیماً واکنش شیمیایی را کاتالیز می کند . این ماده معمولاً از سه تا چهار اسید آمینه تشکیل می شود ، در حالی که سایر اسیدهای آمینه موجود در پروتئین برای حفظ ساختار سوم آنزیم مورد نیاز است.

هر جایگاه فعال تکامل یافته است تا برای اتصال یک بستر خاص و کاتالیز یک واکنش خاص بهینه شود و در نتیجه ویژگی بالایی داشته باشد . این ویژگی با آرایش اسیدهای آمینه در جایگاه فعال و ساختار بسترها تعیین می شود. گاهی اوقات آنزیم ها نیز برای انجام عملکرد خود نیاز به اتصال با برخی از کوفاکتورها را دارند. جایگاه فعال معمولاً یک شیار از آنزیم است که می تواند در یک تونل عمیق درون آنزیم قرار گیرد ، [۳۲] یا بین رابط های آنزیم های چند مولتی قرار گیرد . یک جایگاه فعال می تواند یک واکنش را به طور مکرر کاتالیز کند زیرا باقیمانده ها در پایان واکنش تغییر نمی‌کنند (ممکن است در طول واکنش تغییر کنند ، اما تا پایان دوباره تولید می شوند). این فرایند با کاهش انرژی فعال سازی واکنش حاصل می شود ، بنابراین بسترهای بیشتری انرژی کافی برای انجام واکنش دارند. [۳۳]

مکانیسم[ویرایش]

اتصال بستر[ویرایش]

آنزیم‌ها قبل از اینکه بتوانند هرگونه واکنش شیمیایی را کاتالیز کنند، باید بسترهای خود را متصل کنند. آنزیم‌ها معمولاً مشخص می‌کنند که به چه لایه‌هایی متصل می‌شوند و سپس واکنش شیمیایی کاتالیز می‌شود. ویژگی (en:Chemical specificity) محل اتصال (en:Binding site) با شکل مکمل، بار و ویژگی‌های آب دوست / آبگریز به لایه‌ها بدست می‌آید؛ بنابراین آنزیم‌ها می‌توانند بین مولکول‌های سوبسترا بسیار شبیه از لحاظ شیمی گزینی، جهت‌گزینی و استریوسپکتیک (en:Stereospecificity) تفاوت قائل شوند.[۳۴]

برخی از آنزیم‌هایی که بالاترین ویژگی و دقت را نشان می‌دهند، در کپی و بیان ژنوم نقش دارند. برخی از این آنزیم‌ها مکانیسم‌های " نمونه‌خوانی " (Proofreading (biology)) دارند. در اینجا، آنزیمی مانند DNA پلیمراز در مرحله اول یک واکنش را کاتالیز می‌کند و سپس در مرحله دوم صحت محصول را بررسی می‌کند.[۳۵] این فرایند دو مرحله ای منجر به میانگین نرخ خطای کمتر از ۱ خطا در ۱۰۰ میلیون واکنش در پلیمرازهای پستانداران با راستی بالا می‌شود. :۵٫۳٫۱ مکانیسم‌های تصحیح مشابه نیز در RNA پلی مراز،[۳۶] آمینواسیل tRNA سنتاز (Aminoacyl tRNA synthetase)[۳۷] و ریبوزوم یافت می‌شود.[۳۸]

برعکس، برخی از آنزیم‌ها دارای خاصیت گسترده بی نظمی آنزیمی (Enzyme promiscuity) هستند و بر روی طیف وسیعی از لایه‌های مختلف مرتبط با فیزیولوژیک اثر می‌گذارند. بسیاری از آنزیم‌ها دارای فعالیت‌های جانبی کوچکی هستند که به‌طور اتفاقی (نظریه تکامل مولکولی خنثی (Neutral theory of molecular evolution)) به‌وجود آمده‌اند، که ممکن است نقطه شروع انتخاب تکاملی جدید باشد.[۳۹][۴۰]

برای توضیح ویژگی مشاهده شده آنزیم‌ها، در سال ۱۸۹۴ هرمان امیل فیشر، شیمی‌دان آلمانی و برنده جایزه نوبل شیمی پیشنهاد کرد که آنزیم و سوبسترا دارای اشکال هندسی مکمل خاصی هستند که دقیقاً در یکدیگر جای می‌گیرند.[۴۱] این پیشنهاد اغلب به عنوان مدل «قفل و کلید» نامیده می‌شود. :۸٫۳٫۲ این مدل اولیه ویژگی آنزیم را توضیح می‌دهد، اما قادر به توضیح ثبات حالت گذار که آنزیم‌ها به دست می‌آورند نیست.

در سال ۱۹۵۸، دانیل کوشلند اصلاحاتی را در مدل قفل و کلید پیشنهاد داد: از آنجا که آنزیم‌ها ساختارهای نسبتاً انعطاف‌پذیر هستند، در اثر فعل و انفعال بستر با آنزیم، سایت فعال به‌طور مداوم با تعامل با بستر تغییر فرم می‌دهد.[۴۲] در نتیجه، بستر به سادگی به یک مکان فعال سفت و سخت متصل نمی‌شود. زنجیره‌های جانبی اسید آمینه که جایگاه فعال را تشکیل می‌دهند در موقعیت‌های دقیق قالب‌بندی می‌شوند که آنزیم را قادر می‌سازد تا عملکرد کاتالیزوری خود را انجام دهد. در بعضی موارد مانند گلیکوزید هیدرولازها، مولکول سوبسترا نیز با ورود به محل فعال، اندکی تغییر شکل می‌دهد.[۴۳] سایت فعال همچنان تغییر می‌کند تا زمانی که بستر کاملاً بسته شود،

در آن زمان شکل نهایی و توزیع بار تعیین می‌شود. تناسب القایی ممکن است درستی تشخیص مولکولی را در حضوری رقابتی و نویز از طریق مکانیسم تصحیح ساختاری (Conformational proofreading) افزایش دهد.[۴۴]

کاتالیز[ویرایش]

آنزیم‌ها می‌توانند واکنش‌ها را از چند طریق تسریع کنند، همه این راه‌های گوناگون در نهایت انرژی فعال سازی را کاهش می‌دهند (ΔG ‡، انرژی آزاد گیبس)

آنزیم‌ها ممکن است به‌طور همزمان از چندین مکانیزم استفاده کنند. به عنوان مثال، پروتئازها مانند تریپسین با استفاده از یک سه‌گانه کاتالیزوری، کاتالیز کووالانسی را با استفاده از یک حفره اکسیانیون (Oxyanion hole) انجام دهند و تجمع بار را در حالت گذار تثبیت می‌کنند و با استفاده از یک بستر آب گرا، هیدرولیز کامل را ایجاد می‌کنند.[۴۸]

پویایی‌شناسی[ویرایش]

آنزیم‌ها ساختارهای ساکن و سختی نیستند. در عوض آنها دارای حرکت‌های دینامیکی پیچیده داخلی شامل حرکات قسمت‌هایی از ساختار آنزیم مانند باقیمانده اسیدهای آمینه جداگانه، گروه‌های باقیمانده که یک حلقه پروتئین یا واحد ساختار ثانویه تشکیل می‌دهند، یا حتی یک کل حوزه پروتئین هستند. این حرکات منجر به ایجاد یک مجموعه ساختاری از ساختارهای کمی متفاوت می‌شود که در تعادل با یکدیگر تعامل برقرار می‌کنند. حالات مختلف درون این مجموعه ممکن است با جنبه‌های مختلف عملکرد آنزیم مرتبط باشد. به عنوان مثال، ترکیبات مختلف آنزیم دی هیدروفولات ردوکتاز مطابق با تئوری تشدید کاتالیزوری (Catalytic resonance theory) با اتصال بستر، تجزیه، آزاد سازی کوفاکتور و مراحل آزاد سازی محصول از چرخه کاتالیزوری مرتبط است.[۴۹]

ارائه بستر[ویرایش]

ارائه بستر (Substrate presentation) فرایندی است که در آن آنزیم از بستر خود جدا می‌شود. آنزیم‌ها را می‌توان به غشا پلاسما به دور از یک بستر در هسته یا سیتوزول جدا کرد. یا درون غشا، یک آنزیم را می‌توان به صورت تقسیم لیپید دور از بستر خود در ناحیه مختل شده جدا کرد. هنگامی که آنزیم آزاد می‌شود با بستر آن مخلوط می‌شود. متناوباً، می‌توان آنزیم را در نزدیکی بستر آن جداسازی کرد تا آنزیم فعال شود. به عنوان مثال، آنزیم می‌تواند محلول باشد و هنگام فعال شدن به یک لیپید در غشای پلاسما متصل شود و سپس بر روی مولکول‌های غشای پلاسما عمل کند.

مدولاسیون آلوستریک[ویرایش]

مکان‌های آلوستریک یا دگرریختار محل‌هایی روی آنزیم هستند که از جایگاه فعال متمایز هستند و به مولکول‌های محیط سلولی متصل می‌شوند. این مولکول‌ها سپس باعث تغییر در ساختار یا دینامیک آنزیمی می‌شوند که به جایگاه فعال منتقل می‌شود و بنابراین بر سرعت واکنش آنزیم تأثیر می‌گذارد.[۵۰] به این ترتیب، برهمکنش دگرریختار می‌تواند آنزیم‌ها را مهار یا فعال کند. برهمکنش دگرریختار با متابولیت‌های بالادست یا پایین دست در مسیر متابولیسم آنزیم باعث تنظیم بازخورد می‌شود و فعالیت آنزیم را با توجه به شار (Flux (metabolism)) از طریق بقیه مسیر تغییر می‌دهد.[۵۱]

کوفاکتورها[ویرایش]

برخی از آنزیم‌ها برای نشان دادن فعالیت کامل نیازی به مؤلفه‌های اضافی ندارند. برخی دیگر برای محدود کردن فعالیت به مولکولهای غیر پروتئینی به نام کوفاکتور نیاز دارند.[۵۲] کوفاکتورها می‌توانند به صورت معدنی (مانند یون‌های فلزی و خوشه‌های گوگرد آهن (Iron–sulfur cluster)) یا ترکیبات آلی (به عنوان مثال، فلاوین (Flavin group) و هم) باشند. این کوفاکتورها اهداف بسیاری را ارائه می‌دهند. به عنوان مثال، یون‌های فلزی می‌توانند در تثبیت گونه‌های هسته ای در محل فعال کمک کنند.[۵۳] کوفاکتورهای آلی می‌توانند یا کوآنزیمهایی باشند که در طی واکنش از محل فعال آنزیم آزاد می‌شوند، یا گروه‌های پروتز که محکم به آنزیم وصل می‌شوند. گروه‌های پروتزهای آلی می‌توانند به صورت کووالانسی محدود شوند (به عنوان مثال، بیوتین در آنزیم‌هایی مانند پیروات کربوکسیلاز).[۵۴]

کربنیک آنهیدراز نمونه ای از آنزیمیست که حاوی کوفاکتور است، که از یک کوفاکتور روی که به عنوان بخشی از سایت فعال آن وجود دارد استفاده می‌کند.[۵۵] این یون‌ها یا مولکول‌های معمولاً در محل فعال یافت می‌شوند و درگیر در کاتالیز هستند.[۲] :۸٫۱٫۱ به عنوان مثال، فلاوین و سازنده‌های هم اغلب در واکنش‌های ردوکس نقش دارند. :۱۷

به آنزیم‌هایی که به کوفاکتور احتیاج دارند اما محدودیتی ندارند، آنزیم بنزیم یا آپوپروتئین گفته می‌شود. یک آنزیم همراه با کوفاکتور مورد نیاز برای فعالیت یک هولو آنزیم[e] یا هالوآنزیم[f] نامیده می‌شود. اصطلاح هولوزیم نیز می‌تواند برای آنزیم‌هایی از جمله DNA پلیمرازها که حاوی زیر واحدهای پروتئینی متعددی هستند استفاده شود. در اینجا هولوزانیم یک کمپلکس کامل است که شامل تمام زیر واحدهای مورد نیاز برای فعالیت است.[۲] :۸٫۱٫۱

کوآنزیم‌ها[ویرایش]

کوآنزیم‌ها مولکولهای آلی کوچکی هستند که می‌توانند آزادانه یا محکم به آنزیم متصل شوند. کوآنزیم‌ها گروه‌های شیمیایی را از یک آنزیم به دیگری منتقل می‌کنند.[۵۶] نمونه‌های آن شامل نیکوتین‌آمید آدنین دی‌نوکلئوتید فسفات (NADPH)، نیکوتین‌آمید آدنین دی‌نوکلئوتید (NADH) و آدنوزین تری‌فسفات (ATP) است. برخی کوآنزیم‌ها، مانند فلاوین مونونوکلئوتید (FMN)، فلاوین آدنین دینوکلئوتید (FAD)، تیامین پیروفسفات (TPP) و تترا هیدروفولات (THF) از ویتامین‌ها مشتق می‌شوند. این کوآنزیم‌ها نمی‌توانند توسط بدن de novo سنتز (De novo synthesis) شوند و ترکیبات (ویتامین‌ها) که از نزدیک مرتبط هستند باید از رژیم غذایی حاصل شود. گروه‌های شیمیایی حمل شده شامل موارد زیر هستند:

از آنجا که کوآنزیم‌ها به عنوان یک نتیجه از عمل آنزیم شیمیایی تغییر می‌یابند، در نظر گرفتن کوآنزیم‌ها به عنوان یک کلاس خاص از سوبستراها، یا سوبستراهای دوم مفید است که برای بسیاری از آنزیم‌های مختلف مشترک است. به عنوان مثال، حدود ۱۰۰۰ آنزیم شناخته شده‌است که از کوآنزیم NADH استفاده می‌کنند.[۵۷]

کوآنزیم‌ها معمولاً به‌طور مداوم بازسازی می‌شوند و غلظت آنها در سطح ثابت داخل سلول حفظ می‌شود. به عنوان مثال، NADPH از طریق مسیر فسفات پنتوز و S-آدنوزیل متیونین توسط متیونین آدنوزیل ترانسفراز (Methionine adenosyltransferase) بازسازی می‌شود. این بازسازی مداوم یعنی مقادیر کمی از کوآنزیم‌ها می‌توانند بسیار فشرده استفاده شوند. به عنوان مثال، بدن انسان هر روز وزن خود را در ATP تغییر می‌دهد.[۵۸]

ترمودینامیک[ویرایش]

مانند همه کاتالیزورها، آنزیم‌ها موقعیت تعادل شیمیایی واکنش را تغییر نمی‌دهند. در حضور آنزیم، واکنش در همان جهت که آنزیم نیز حضور ندارد انجام می‌شود فقط حضور آنزیم موجب می‌شود که با سرعت بیشتری انجام شود.[۲] :۸٫۲٫۳ به عنوان مثال، انیدراز کربنیک بسته به غلظت واکنش دهنده‌های آن، واکنش آن را از هر جهت تغییر می‌دهد:[۵۹]

میزان واکنش بستگی به انرژی فعال‌سازی مورد نیاز برای تشکیل حالت گذار دارد که پس از آن در محصولات فروپاشی می‌شود. آنزیم‌ها با کاهش انرژی حالت گذار، سرعت واکنش را افزایش می‌دهند. اول، اتصال یک مجموعه پیچیده آنزیم-سوبسترا کم انرژی (ES) را تشکیل می‌دهد. دوم، آنزیم وضعیت انتقال را به گونه‌ای تثبیت می‌کند که در مقایسه با واکنش غیرقابل تجزیه (ES ‡) به انرژی کمتری برای رسیدن به آن نیاز دارد. سرانجام، کمپلکس آنزیم-محصول (EP) برای انتشار محصولات جدا می‌شود.[۲] :۸٫۳

آنزیم‌ها می‌توانند دو یا چند واکنش ایجاد کنند، به طوری که می‌توان از یک واکنش ترمودینامیکی مطلوب برای «رانش» ترمودینامیکی نامطلوب استفاده کرد به طوری که انرژی ترکیبی محصولات پایین‌تر از سوبستراها باشد. به عنوان مثال، هیدرولیز ATP اغلب برای هدایت سایر واکنشهای شیمیایی استفاده می‌شود.[۶۰]

سینتیک[ویرایش]

سینتیک آنزیم بررسی چگونگی اتصال آنزیم‌ها به سوبستراها و تبدیل آنها به محصولات است.[۶۱] داده‌های نرخ استفاده شده در آنالیزهای سینتیکی معمولاً از سنجش آنزیم به دست می‌آیند. در سال ۱۹۱۳ لیونور میکائلیس و ماد منتن نظریه کمی از سینتیک آنزیم را مطرح کردند که از آن به عنوان سینتیک میکائلیس–منتن یاد می‌شود.[۶۲] سهم عمده میکائلیس و منتن در فکر کردن به واکنشهای آنزیمی در دو مرحله بود. در حالت اول، سوبسترا برگشت‌پذیر به آنزیم متصل می‌شود، و کمپلکس آنزیم-سوبسترا را تشکیل می‌دهد که به افتخار آنها مجموعه کمپلکس میکائلیس و منتن نامیده می‌شود. سپس آنزیم مرحله شیمیایی واکنش را کاتالیز می‌کند و محصول را آزاد می‌کند. این کار توسط جورج ادوارد بریگز (George Edward Briggs) و جان هالدین توسعه یافت. آنها معادلات سینتیک را بدست آوردند که امروزه هنوز هم کاربرد گسترده‌ای دارند.[۶۳]

میزان آنزیم به شرایط محلول و غلظت سوبسترا بستگی دارد. برای پیدا کردن حداکثر سرعت یک واکنش آنزیمی، غلظت سوبسترا افزایش می‌یابد تا اینکه یک مقدار ثابت در شکل‌گیری محصول مشاهده شود که در منحنی اشباع مقابل نشان داده شده‌است. با افزایش غلظت سوبسترا، بیشتر و بیشتر آنزیم آزاد به کمپلکس substrate-bound ES ES تبدیل می‌شود و اشباع رخ می‌دهد. در ماکزیمم سرعت واکنش (V Max) آنزیم، تمام سایت‌های فعال آنزیم به سوبسترا متصل شده و مقدار کمپلکس ES همان مقدار کل آنزیم است.[۲] :۸٫۴

V max تنها یکی از چند پارامتر مهم سینتیکی است. مقدار بستر مورد نیاز برای دستیابی به میزان واکنش خاص نیز مهم است که توسط ثابت سینتیک میکائلیس–منتن (Km) که غلظت بستر مورد نیاز یک آنزیم برای رسیدن به نیمی از سرعت واکنش حداکثر (V max) آن است، داده شده‌است. به‌طور کلی، هر آنزیم دارای یک KM ویژه برای یک بستر مشخص است. یکی دیگر از ثابت‌های مفید، kcat است که به آن عدد گردش نیز گفته می‌شود و تعداد مولکول‌های بستر است که توسط یک سایت فعال در هر ثانیه اداره می‌شود.[۲] :۸٫۴


سینتیک میکائلیس–منتن به قانون فعالیت جرمی (Law of mass action) متکی است، که از مفروضات واپخش آزاد و برخورد تصادفی از ترمودینامیک ناشی می‌شود. بسیاری از فرایندهای بیوشیمیایی یا سلولی به دلیل ازدحام ماکرومولکولی (Macromolecular crowding) و حرکت مولکولی محدود، از این شرایط به‌طور قابل توجهی منحرف می‌شوند.[۶۴] اخیراً، با گسترش نمونه کمپلکس سعی در اصلاح این اثرات دارند.[۶۵]

بازداری[ویرایش]

میزان سرعت واکنش آنزیم به وسیله انواع مختلفی از مهارکننده‌های آنزیم قابل کاهش است. بازدارنده‌های آنزیمی عوامل مولکولی هستند که با کاتالیزوز تداخل پیدا کرده و واکنش‌های آنزیمی را آهسته یا متوقف می‌کنند. بازدارنده‌ها به صورت برگشت‌پذیر یا برگشت‌ناپذیر هستند. بازدارنده‌های برگشت‌پذیر عبارتند از:[۶۷] :۷۳–۷۴

برگشت‌پذیر[ویرایش]

یک بازدارندهٔ رقابتی به خاطر تشابه در هندسه مولکولی یا سوبسترا برای جایگاه فعال آنزیم رقابت می‌کند با اشغال جایگاه فعال توسط بازدارنده از اتصال سوبسترا با آنزیم ممانعت می‌کند. مهارکننده (Competitive inhibition) و سوبسترا نمی‌توانند همزمان با آنزیم متصل شوند.[۶۸] اغلب مهار کننده‌های رقابتی کاملاً شبیه سوبسترا واقعی آنزیم هستند. به عنوان مثال، داروی متوترکسات یک مهار کننده رقابتی آنزیم دی هیدروفولات ردوکتاز است که باعث کاهش دی هیدروفولات به تتراهیدروفولات می‌شود.[۶۶] شباهت بین ساختارهای دی هیدروفولات و این دارو در شکل نشان داده شده‌است. با غلظت زیاد سوبسترا می‌توان بر این نوع مهارکننده غلبه کرد. در برخی موارد، مهارکننده می‌تواند به سایتی غیر از محل اتصال سوبسترا معمولی وصل شود و یک اثر آلوستریک برای تغییر شکل محل اتصال معمولی اعمال کند.[۶۹]

مهارکننده غیر رقابتی (Non-competitive inhibition) به مکانی غیر از محل اتصال سوبسترا متصل می‌شود. سوبسترا هنوز هم با تمایل معمول آن متصل می‌شود و از این رو Km یکسان باقی می‌ماند. با این حال بازدارنده بازده کاتالیزوری آنزیم را کاهش می‌دهد به طوری که V max کاهش می‌یابد. بر خلاف مهار رقابتی، نمی توان با غلظت زیاد سوبسترا بر مهار غیر رقابتی سوبسترا غلبه کرد. مهار آنزیم انولاز در مسیر گلیکولیز توسط یون فلوئور نوعی از مهار غیر رقابتی است.[۶۷] :۷۶–۷۸

مهارکننده بدون رقابت (Uncompetitive inhibitor) نمی‌تواند تنها به مجموعه آنزیم سوبسترا وصل شود، از این رو، این نوع مهارکننده‌ها در غلظت بالای سوبسترا مؤثر هستند. در حضور مهارکننده، مجموعه آنزیم-سوبسترا غیرفعال است.[۶۷] :۷۸ این نوع مهار نادر است. یک بازدارندهٔ نارقابتی در مکانی غیر از سوبسترا به آنزیم متصل شده و بر خلاف مهارکنندهٔ رقابتی تنها به کمپلکس ES متصل می‌شود.[۷۰]

یک مهار کننده مخلوط (Mixed inhibition) به یک سایت آلوستریک متصل می‌شود و اتصال سوبسترا و بازدارنده روی یکدیگر تأثیر می‌گذارند. عملکرد آنزیم هنگام اتصال به بازدارنده کاهش می‌یابد اما از بین نمی‌رود. این نوع بازدارنده‌ها از معادله میکائلیس–منتن پیروی نمی‌کنند.[۶۷]:۷۶–۷۸

برگشت‌ناپذیر[ویرایش]

یک بازدارنده برگشت‌ناپذیر، آنزیم را معمولاً با ایجاد پیوند کووالانسی به پروتئین به‌طور دائمی غیرفعال می‌کند.[۷۱] پنی‌سیلین[۷۲] و آسپرین داروهای رایجی هستند که به این روش عمل می‌کنند.[۷۳]

عملکرد[ویرایش]

در بسیاری از ارگانیسم‌ها، بازدارنده‌ها ممکن است به عنوان بخشی از یک مکانیسم بازخورد عمل کنند. اگر یک آنزیم بیش از حد یک ماده در ارگانیسم تولید کند، ممکن است آن ماده به عنوان یک بازدارنده برای آنزیم در ابتدای مسیر تولیدکننده آن عمل کند و باعث کند شدن تولید ماده در صورت وجود مقدار کافی شود که نوعی بازخورد منفی است. مسیرهای متابولیکی عمده مانند چرخه اسید سیتریک از این مکانیسم استفاده می‌کنند.[۲]:۱۷٫۲٫۲

از آنجا که بازدارنده‌ها عملکرد آنزیم‌ها را تعدیل می‌کنند، اغلب به عنوان دارو استفاده می‌شوند. بسیاری از این داروها بازدارنده‌های قابل برگشت رقابتی هستند که شبیه سوبسترا بومی آنزیم هستند، مشابه متوترکسات که در بالا اشاره شد، سایر نمونه‌های معروف شامل استاتین‌هایی است که برای درمان کلسترول بالا استفاده می‌شود،[۷۴] و بازدارنده‌های پروتئاز که برای درمان عفونت‌های ویروسی مانند ویروس HIV استفاده می‌شود.[۷۵] یک نمونه معمول از یک بازدارنده برگشت‌ناپذیر که به عنوان دارو استفاده می‌شود، آسپرین یا استیل‌سالیسیلیک اسید است که آنزیم‌های COX-1 و COX-2 را که پروستاگلاندین پیام رسان التهاب را مهار می‌کنند.[۷۳] دیگر بازدارنده‌های آنزیم سموم هستند. به عنوان مثال، سیانور یک مهارکننده آنزیم برگشت‌ناپذیر است که با مس و آهن در محل فعال آنزیم سیتوکروم اکسیداز سی ترکیب شده و از تنفس سلولی جلوگیری می‌کند.[۷۶]

تثبیت آنزیم[ویرایش]

آنزیم ها غالباً در حاملهای بی اثر و نامحلول تثبیت می شوند که به دلیل قابلیت استفاده مجدد چند برابر ، کارایی آنها را افزایش می دهند. خواص آنزیم های بی حرکت به روش بی حرکتی و نوع حامل بستگی دارد. انتخاب حامل معمولاً مربوط به سازگاری زیستی ، پایداری شیمیایی و حرارتی ، عدم حلالیت در شرایط واکنش ، قابلیت بازسازی و استفاده مجدد آسان و همچنین بازده هزینه است.[۷۷]

اکثر آنزیم‌ها نسبتاً ناپایدار هستند و هزینه‌های تولید و جداسازی بالایی دارند و این یک نقطه ضعف را نشان می‌دهد که بازیابی آنزیم‌های فعال در مخلوط واکنش پس از استفاده از نظر فنی بسیار دشوار است.[۷۸] آنزیمهای بی حرکت مورد توجه بسیاری قرار گرفته که مایلند از فناوری بی‌حرکتی آنزیمی برای اهداف خاص در بخشهای پزشکی و صنعتی استفاده کنند.[۷۹] اصطلاح «آنزیمهای بی حرکت» به آنزیمهایی گفته می‌شود که از نظر فیزیکی به تکیه گاه‌های جامد خاص متصل شده و بنابراین محدود شده‌اند و می‌توانند به‌طور مکرر و مداوم با حفظ فعالیتهای کاتالیزوری خود مورد استفاده قرار گیرند.[۸۰]

در سالهای اخیر، به‌طور موازی با درک مکانیسم‌های بیوسنتز آنزیمی، بهره‌وری آنزیمی از طریق بهبود فناوری مهندسی ژنتیک، فناوری کشت میکروبی در حال رشد است. استفاده آنزیم بی حرکت در بیوتکنولوژی دارای مزایایی است.[۸۱] معرفی کاتالیزورهای آنزیمی بی حرکت، عملکرد فنی فرایندهای صنعتی را بسیار بهبود بخشیده و در نتیجه راندمان و بهره‌وری اقتصادی را افزایش داده‌است. آنزیم‌های بی حرکت معمولاً پایدارتر از آنزیم‌های متحرک هستند، می‌توان با حذف آنزیم از محلول واکنش، سرعت واکنش را کنترل کرد. یک مزیت اضافی جداسازی آسان آنزیم از محصول است تا بتوان از آلودگی جلوگیری کرد. همچنین، استفاده از آنزیم بی حرکت امکان ایجاد یک سیستم واکنش چند آنزیمی را فراهم می‌کند. طی دهه‌های گذشته، مطالعات بیوشیمیایی و بیوفیزیکی به منظور افزایش پایداری و فعالیت آنزیم‌ها از طریق بی‌حرکتی آنزیم‌ها، به‌طور فعال انجام شده‌است.[۸۲]

الکترود آنزیمی[ویرایش]

الکترود آنزیمی یک مبدل شیمیایی کوچک است که با ترکیب یک روش الکتروشیمیایی با فعالیت آنزیم بی حرکت کار می‌کند. برای نمونه از گلوکز اکسیداز تثبیت شده روی ژل برای اندازه‌گیری غلظت گلوکز در محلولهای بیولوژیکی و در بافتهای آزمایشگاهی استفاده می‌کند.[۸۳]

آنزیم‌ها اجزای اساسی کاتالیزوری زیست‌شناسی هستند و آنزیم‌های فعال اکسیداسیون ردوکس را در سطوح الکترود جذب می‌کنند و امکان جستجوی مستقیم عملکرد آنها را فراهم می‌کند. از طریق اندازه‌گیری‌های الکتروشیمیایی استاندارد، فعالیت کاتالیزوری، برگشت‌پذیری و پایداری، پتانسیل کوفاکتورهای فعال ردوکس و سرعت انتقال الکترون بین سطحی را می‌توان به راحتی اندازه گرفت. تحقیقات مکانیکی در مورد نرخ بالای الکتروکاتالیستی و انتخاب آنزیم‌ها ممکن است از طراحی الکتروکاتالیست‌های مولکولی و ناهمگن مصنوعی الهام بگیرد. تحقیقات الکتروشیمیایی آنزیم‌ها همچنین به درک ما از فعالیت آنها در محیط بیولوژیکی و چرایی تکامل آنها در ساختار و عملکرد فعلی کمک می‌کند. با این حال، آرایه متداول تکنیک‌های الکتروشیمیایی (به عنوان مثال، ولتامتری و کرونوآمپومتری) به تنهایی یک تصویر محدود از رابط آنزیم-الکترود را ارائه می‌دهد.[۸۴]


در حسگرهای زیستی و سلولهای سوخت زیستی، اغلب سرعت انتقال الکترون بین سطح آنزیم و الکترود برای بهبود عملکرد دستگاه‌ها (حساسیت یا توان خروجی) مطلوب است. سه استراتژی مهم در دسترس برای بهبود عملکرد الکترودهای اصلاح شده با آنزیم: استفاده از مهندسی پروتئین، پلیمرهای طراح (designer polymers) و نانومواد است. مهندسی پروتئین یا پروتئین‌های تشکیل دهنده عناصر بیوکاتالیستی امکان تنظیم ثبات، فعالیت و ویژگی آنها را فراهم می‌کند. همچنین می‌تواند باعث تغییر کارایی بی حرکتی آنزیم شود (به عنوان مثال جذب در مقابل بیحرکتی کووالانسی). اگر انتقال مستقیم الکترون مطلوب نباشد، ممکن است بتوان پلیمرهایی را در سیستم وارد کرد که انتقال الکترون را به سطح الکترود یا از آن واسطه می‌کنند. اخیراً پیشرفت چشمگیری در طراحی پلیمرها برای اصلاح الکترودها، از جمله پلیمرهای منقوش مولکولی و پلیمرهای پاسخ دهنده، حاصل شده‌است. سومین عنصری که می‌تواند در الکترودها گنجانده شود، ذرات نانو است. این نانومواد می‌توانند به عنوان داربست از طریق جذب یا واکنش شیمیایی با گروه‌های عاملی، افزایش سطح و مقاومت الکترود، عناصر بیولوژیکی را بی حرکت کنند. انبوهی از نانومواد به عنوان بخشی از جدیدترین الکترودهای اصلاح شده با آنزیم، از جمله گرافن، نانولوله‌های کربنی، نانوذرات فلزی، سیلیس‌ها و چارچوب‌های فلزی - آلی در حال آزمایش است. بعضی از اینها همچنین می‌توانند به عنوان نانوسیم طراحی شوند تا بتوانند انتقال مستقیم الکترون از نقاط فعال دیستال را در آنزیم‌ها انجام دهند یا کوتاه کنند.[۸۵]

عوامل مؤثر بر فعالیت آنزیم[ویرایش]

از آنجا که آنزیم‌ها از پروتئین تشکیل شده‌اند، عملکرد آنها نسبت به تغییر در بسیاری از عوامل شیمیایی فیزیکی مانند pH، دما، غلظت بستر و غیره حساس است.

غلظت آنزیم[ویرایش]

به منظور بررسی اثر افزایش غلظت آنزیم بر میزان واکنش، بستر باید در مقدار اضافی وجود داشته باشد. به عنوان مثال، واکنش باید مستقل از غلظت بستر باشد. هرگونه تغییر در مقدار محصول تشکیل شده طی یک دوره زمانی مشخص به سطح آنزیم موجود بستگی خواهد داشت. گفته می‌شود این واکنشها «مرتبه صفر» هستند زیرا سرعتها از

نظر خود را بنویسید

آخرین مطالب